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Dyslipidaemia is characterised by enhanced production of reactive oxygen species and increased 
oxidative stress, which may affect liver, kidney and heart function. It is considered as a critical risk 
factor for cardiovascular and liver diseases. The aim of our study was to assess the effect of vanadium 
chloride on the oxidative stress state of liver, kidney and heart functions along with electrolyte balance 
during treatment of dyslipidemia using simvastatin in an animal model.  Rats were assigned to 1 of 5 
groups: group 1, control group; group 2, received high fat diet (HFD); group 3, received HFD and 30 
mg/kg body weight (BW) simvastatin; group 4, received HFD and 15 mg/kg BW vanadium chloride and 
group 5, received HFD, simvastatin and vanadium chloride. Drugs were administered orally by gavage 
for the last week of the experimental period. HFD was found to elicit a significant decrease (P ≤ 0.05) in 
non-protein sulfhydryls and significant increases (P ≤ 0.05) in hepatic and cardiac malondialdehyde 
(MDA), serum creatine kinase, lactate dehydrogenase, creatinine, urea, uric acid, calcium, sodium and 
potassium. Oral administration of vanadium chloride did not synergize simvastatin to ameliorate the 
negative effects of HFD, instead it worsens the negative effect of the HFD. Vanadium chloride 
administration decreased the concentration of non-protein sulfhydryls and increased MDA 
concentration in liver and heart tissues. It also caused further increase in the serum concentration of all 
measured serum parameters. These data proved that the vanadium concentration used in this study is 
not safe or efficient in ameliorating the oxidative stress or in improving kidney or heart functions in 
dyslipidemic rats. 
 
Key words: Vanadium, simvastatin, oxidative stress, kidney, rats. 

 
        
INTRODUCTION 
 
Dyslipidemia is characterized by elevated plasma 
triglycerides, cholesterol and LDL-cholesterol and 
reduced HDL-cholesterol.  It  is  a  complex  disorder  that 

involves both systemic, as well as organ-specific 
mechanisms    (Chakravarthy   et al.,   2016). These 
mechanisms result in abnormal lipids plasma levels  from 
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disturbances in the release and uptake of lipids by 
adipose tissues as well as removal of lipids from 
circulation (Tikhonenko et al., 2010). Dyslipidemia is one 
of the key risk factors for cardiovascular disease and 
there is a strong causal relationship between 
dyslipidaemia and cardiac diseases (Galema-Boers and 
Roeters van Lennep, 2015). Low levels of high density 
lipoprotein cholesterol (HDL-C) were shown to be a 
predictor for high risk of premature development of 
atherosclerosis (Lawlor et al., 2006). Excess free fatty 
acids in dyslipidemic subjects leads to increased fatty 
acids oxidation in mitochondria resulting in mitochondrial 
overproduction of reactive oxygen species and oxidative 
stress (Tangvarasittichai, 2015). Also, Yuan and Kitts 
(2003) reported that high cholesterol diets reduce hepatic 
glutathione (GSH) levels and decrease the activities of 
antioxidant enzymes. Dyslipidemia and oxidative stress 
are the two main mechanisms responsible for 
development of atherosclerosis and its complications, 
such as cardiovascular diseases (Katakami, 2018). The 
hallmark of atherogenesis is the accumulation of LDL and 
other lipids in the vascular wall (Hansson, 2005). The 
oxidative modification converts LDL into more 
atherogenic particles (Albertini et al., 2002). Also, excess 
fat accumulation in hepatocytes, in the form of lipid 
droplets, may be a factor in pathophysiology of liver 
diseases (Katsiki et al., 2016).   

Statins have been used for the last few decades in the 
management of adults with dyslipidemias (Joyce et al., 
2016). Statins are a group of lipid-lowering agents acting 
by inhibition of 3-hydroxy-3-methylglutaryl coenzyme-A 
(HMG-CoA) reductase. This enzyme catalyses the 
reduction of hydroxymethylgluteryl CoA (HMG-CoA) to 
mevalonic acid during cholesterol biosynthesis (Abbasi et 
al., 2015). It has several pleiotropic actions including 
hypolipidemic effects, its immunomodulatory effects, and 
its protective effects against oxidative stress and 
inflammation (Moutzouri et al., 2012; Mulhauptet al., 
2003). Along with its lipid-lowering activity, statins 
improve function of endothelial cells, increase stability of 
atherosclerotic plaques, decrease oxidative stress, and 
inhibit thrombogenic responses (Patel and Kothari, 2017). 
It is also beneficial in prevention of coronary heat 
diseases even in patients with normal blood cholesterol 
levels (Abbasi et al., 2015). These benefits made statins 
widely prescribed for reducing mortality in cases of 
coronary heart diseases (Patel and Kothari, 2017). 
Although statins are usually well tolerated, they have 
adverse  effects  on  many   tissues,   especially   skeletal  
 

 
 
 
 
muscles and liver (Camerino et al., 2016). The main 
elimination route for statins is through bile after 
metabolism by the liver. Consequently, hepatic 
dysfunction is a risk factor for statin-induced myopathy 
(Patel and Kothari, 2017). 

Vanadium is a naturally occurring metal which exists in 
various oxidation states from -1 to +5 (Barceloux and 
Barceloux, 1999). Vanadium is an ultra-trace element 
essential for many animal species and it is present in 
animal cells at concentrations of 10 to 20 nmol (Brichard 
and Henquin, 1995). Vanadium deficiency is associated 
with reproduction impairment, changes in red blood cell 
formation and iron metabolism (Gummow, 2011). 
Compounds of vanadium are regarded to have insulin-
mimicking or enhancing properties and are used as 
antidiabetic agents. Overall, vanadium therapy was 
shown to normalize blood glucose levels in diabetic-
induced rats and was also shown to cure many 
hyperglycaemia-related disorders (Liu et al., 2013). Some 
other researchers have investigated the toxcicity of 
vanadium compounds depending on oxidation state, 
administration, route of exposure, dose and the sensitivity 
of the organism (Pessoa et al., 2015). Besides its 
potential pharmaceutics, vanadium is also used as a 
dietary supplement for enhancing athletic performance. 

Upon starting this study, we believed that vanadium 
might be considered an antioxidant which might reduce 
the side effects of statins on heart, liver and kidney 
tissues and their respective functions. The uncertainty 
toward vanadium safety is complicated by the existence 
of multiple oxidation states with the potential to 
interconvert via oxidation-reduction, both in the 
environment as well as following ingestion (Heidari et al., 
2016). Here, we try to investigate the effect of oral 
administration of 15 mg/kg vanadium chloride alone, or in 
combination with 30 mg/kg simvastatin, on oxidative 
stress. We investigate kidney function and electrolyte 
balance in an animal model fed a high cholesterol diet.  
 

 
MATERIALS AND METHODS 
 

Chemicals and diet 
 

All chemicals used were of analytical grade unless specified. 
Vanadium (III) chloride (purity 97%) was purchased from Acros, 
Belgium. Cholesterol (purity ≥92.5%) powder was purchased from 
Sigma Aldrich, St. Louis, MO, USA. All other chemical or kits were 
purchased from local markets. The high-fat diet composed of 
crushed pellets mixed with cholesterol powder (1% w/w). The mixed 
pellets were reconstituted with water as a slurry and  dried  properly
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to avoid any fungal contamination 
 
 
Animals and treatment 

 
Thirty male rats (Albino strain) were obtained from the Experimental 
Animal Care Centre, College of Pharmacy, King Saud University, 
Riyadh, KSA. Rats weight were about 150-200 g. They were kept at 
constant temperature (22±2°C), humidity (55%) and 12 h light dark 
conditions during the experiment and water was allowed ad libitum. 
After 1 week of acclimatization, rats were randomly allocated into 
five groups of 6 rats each. The five groups are; Group 1: (control 
group): rats fed a diet of rat pellets for 45 days and received saline 
solution orally by gavage during the last 7 days of the experiment. 
Group 2: (HFD group): rats were fed a high fat diet for 45 days and 
received normal saline orally by gavage for one week at the end of 
experimental period. Group 3: (HFD+S group): rats in this group 
were fed a high-fat diet for 45 days and received simvastatin orally 
by gavage in a dose of 30 mg/kg body weight daily for last 7 days of 
the trial. Group 4: (HFD+V group): rats were fed a high-fat diet for 
45 days and were administered vanadium chloride (15 mg/kg body 
weight) orally by gavage daily during the last week of the 
experimental period. Group 5: (HFD+SV group): these rats received 
high-fat diet for 45 days and in the last week of experiment, rats 
treated also with both simvastatin (30 mg/kg BW) and vanadium 
chloride (15 mg/kg BW) orally by gavage. The animal experiment 
was approved by Institutional Animal Ethics Committee of College 
of Pharmacy, King Saud University, Riyadh, Saudi Arabia.  

 
 
Samples 

 
At the end of the experimental period, rats were fasted for 12 h and 
blood samples were collected from retro-orbital plexus under light 
ether anaesthesia in a plan tubes. Serums were separated by 
centrifugation at 2500 × g for 10 min and transferred to pre-labelled 
Eppendorf tubes for various biochemical parameters. Immediately, 
after blood withdrawal, the animals were sacrificed after using light 
anaesthesia. Liver and heart tissues were isolated, washed with 
chilled normal saline, and frozen at -80°C for subsequent 
determinations of malondialdehyde (MDA) and non-protein 
sulfhydryls (NP-SH) concentrations in these tissues.  

 
 
Estimation of malondialdehyde (MDA) in hepatic and heart 
tissues 

 
Malondialdehyde was determined according to the method reported 
by Utely et al. (1967). Parts of liver and heart tissues were taken 
and homogenized in 0.15 mol/L KCl (at 4°C) in a Potter-Elvehjem 
type C homogenizer to give a 10% w/v homogenate. Aliquots 
(1 mL) of homogenates were incubated at 37°C for 3 h in a 
metabolic shaker. Then 1 mL of 10% aqueous trichloroacetic acid 
(TCA) was added and mixed. The mixture was then centrifuged at 
800 × g for 10 min. One millilitre of the supernatant was mixed with 
1 mL of 0.67% 2-thiobarbituric acid solution and placed in a boiling 
water bath for 10 min. The mixture was cooled and diluted with 
1 mL distilled water. The mixture was centrifuged, and the 
absorbance was determined at the wavelength of 532 nm at room 
temperature against a blank. The concentration of MDA was 
calculated using a standard calibration curve plotted with different 
concentrations of 1, 1, 3, 3’-tetraethoxypropane (TEP). The extent 
of lipid peroxidation was expressed, and MDA values were 
expressed as nanomoles of MDA per gram of protein using a molar 
extinction coefficient for MDA of 1.56x105 M−1 cm−1. The protein 
content was  estimated  according  to  the  method  of  Lowry  et  al.  
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Estimation of non-protein sulfhydryl (NP-SH) in hepatic and 
heart tissue 
 

Hepatic nonprotein sulfhydryls were measured according to the 
method of Sedlak and Lindsay (1968). Liver and heart tissues were 
homogenized in ice-cold normal saline containing 0.02 mmol/L 
ethylenediaminetetraacetic acid (EDTA) to give a 10% w/v 
homogenate. Aliquots of 5 mL of the homogenates were mixed in 
15 mL test tubes with 4 mL of distilled water and 1 mL of 50% TCA. 
The tubes were shaken intermittently for 10 min and centrifuged at 
3000 rpm/min. Two millilitres of supernatant were mixed with 4 mL 
of 0.4 mol/L Tris buffer at pH 8.9, then 0.1 mL of 5,5′-dithio-bis-(2-
nitrobenzoic acid) (DTNB) was added and the tubes were shaken. 
The absorbance was measured within 5 min of DTNB addition at 
412 nm against a blank. The concentrations of non-protein 
sulfhydryl were expressed as nanomoles per gram of protein. The 
protein concentrations in these samples were determined using the 
method of Lowry et al. (1951). 
 
 

Determination of serum creatinine, urea, and uric acid 
 

Serum creatinine was measured by the Jaffe reaction method 
(Fabiny and Ertingshausen, 1971) using a CS604 kit (Crescent 
Diagnostics, Jeddah, Saudi Arabia). Urea was determined by 
urease method and uric acid was determined by uricase method 
described by Tabacco et al. (1979) and Fossati et al. (1980) 
respectively, using Roche kits (Roche Diagnostics GmbH). 
 
 

Determination of serum calcium, sodium and potassium 
 

Calcium concentration in the serum was determined by the method 
described by Gitelman (1967) using the CE500 kit (Crescent 
Diagnostics). Calcium ions react with o-cresolphthalein in an 
alkaline medium forming a purple coloured complex. The intensity 
of this colour is proportional to calcium concentrations in the 
sample. Serum sodium was determined by the Mg-Uranylacetate 
method described by Henry et al. (1974) using Sodium rapid kit 
(Human). Potassium concentration in serum was determined by 
local kit based on the method of Ronald et al. (1992).   
 
 

Statistical analysis 
 

Data were presented as mean ± SE. Analyses was carried out 
using Statistical Package (SPSS, Version 12.0). Data were 
analysed using one-way ANOVA to assess differences between 
groups. Means were statistically compared using Dunnett’s multiple 
comparison tests at a 0.05 significance level. Probability values p ≤ 
0.05 were considered to be statistically significant. 
 
 

RESULTS 
  

Vanadium chloride increases malondialdehyde 
concentrations  
 

Significant (P ≤ 0.05) increases in malondialdehyde 
levels were detected in liver and heart tissues of HFD-
group compared to control one. Liver tissue shows a non-
significant (P≥ 0.05) reduction in the concentrations of 
malondialdehyde  in  the  HFD+V  group  compared   with  
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Figure 1. The changes in malondialdehyde concentrations in liver tissue by high fat diet alone and in 
presence of simvastatin (30 mg/kg BW) or vandium (15 mg/kg BW) or both. 

 
 
 
HFD-group while, further significant (P ≤ 0.05) elevation 
in malondialdehyde concentration were observed in heart 
tissue of the HFD+V group compared to the HFD-group. 
On the other hand, malondialdehyde concentrations were 
significantly (P ≤ 0.05) lower in groups HFD+S and 
HFD+SV compared to the HFD group. The presence of 
vanadium with simvastatin in the HFD+SV group did not 
reduce malondialdehyde concentrations. Malondialdehyde 
concentrations were observed to be greater than those 
found in the HFD+SV group (Figures 1 and 3).  
 
 
Vanadium chloride decreases non-protein sulfhydryl 
concentrations  
 
The effect of vanadium chloride alone, or with simvastatin 
concentration, on non-protein sulfhydryl in liver and heart 
tissues is demonstrated in Figures 2 and 4. Significant (P 
≤ 0.05) decreases the concentration of non-protein 
sulfhydryl were observed in liver and heart tissues of 
HFD-group compared to the control group.  Liver and 

heart tissues show further non-significant (P≥ 0.05) 
reductions in the concentration of non-protein sulfhydryl 
in the HFD+V group when compared with the HFD-group, 
while non-protein sulfhydryl was significantly (P ≤ 0.05) 
increased in the HFD+S and HFD+SV groups when 
compared to the HFD group. 
 
 
Vanadium chloride decreases lactate dehydrogenase 
and creatine kinase activities  
 
The activities of lactate dehydrogenase and total creatine 
kinase in the studied groups are shown in Table 1. 
Significant (P ≤ 0.05) increases in the activities of lactate 
dehydrogenase (LDH) and total creatine kinase (CK) 
were observed in serum of HFD-group compared to 
control. Further significant (P ≤ 0.05) increases in the 
activities of both enzymes were observed in the group fed 
vanadium chloride with high fat diet (HFD+V) compared 
with the HFD-group. On the other hand, rats in the 
HFD+S group  and  in  the  (HFD+SV  group  both)  show 
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Figure 2. The changes in non-protein sulfahydryl concentrations in liver tissue by high fat diet alone 
and in presence of simvastatin (30 mg/kg BW) or vandium (15 mg/kg BW) or both. 

 
 
 

Table 1. Effect of vanadium chloride or simvastatin or both on heart function of rats fed high fat diet.   

 

Parameter  Control diet group HFD group HFD + S group HFD + V group HFA + SV group 

LDH (U/L) 116.66 ± 3.53 250.79 ± 6.78
a 

154.36 ± 5.61
b 

355.55 ± 11.77
b 

200.00 ± 11.11
b 

Creatine kinase (U/L) 159.00 ± 3.21 344.33 ± 8.11
a 

198.00 ± 5.21
b 

382.66 ± 10.72
b 

286.5.96 ± 5.96
b 

 

The values are expressed as mean ± SE. 
a,
The mean values of HFD group are significantly different in comparison with control 

(P≤0.05). 
b,
The mean values are significantly different in comparison with HFD group (P≤0.05). 

 
 
 

significant (P ≤ 0.05) reduction in the activities of LDH 
and CK compared to the HFD-group. However, rats in the 
HFD+SV group had significant increases in serum 
activities of both enzymes compared to HFD+S group. 
 
 
Vanadium chloride decreases kidney function and 
causes electrolytes imbalance 
 
Significant increases (P ≤ 0.05) in serum concentration of 

urea, uric acid, creatinine, sodium, potassium and 
calcium were detected in the HFD-group compared to the 
control group. Vanadium chloride in HFD+V group 
caused a significant (P ≤ 0.05) increase in all these 
parameters compared with HFD-group.  

On the other hand, rats fed high fat diet and simvastatin 
alone (HFD+S group) or simvastatin and vanadium 
chloride (HFD+SV group) show significant (P ≤ 0.05) 
reduction in serum concentration of urea, uric acid, 
creatinine, Na

+
, K

+
 and Ca

2+
 when compared to the  HFD-  



 
 

92          Afr. J. Pharm. Pharmacol. 
 
 
 

 
 

Figure 3. The changes in malondialdehyde concentrations in heart tissue by high fat diet alone and in 
presence of simvastatin (30 mg/kg BW) or vandium (15 mg/kg BW) or both. 

 
 
 

Table 2. Effect of vanadium chloride or simvastatin or both on kidney function of rats fed high fat diet.   

 

Parameter Control diet group HFD group HFD + S group HFD + V group HFA + SV group 

Urea (mg/dl) 41.16 ± 1.12 100.71 ± 4.74
a 

68.03 ± 3.17
b 

176.33 ± 7.44
b 

85.88 ± 3.35
b 

Creatinine (mg/dl) 1.03 ± 0.03 1.79 ± 0.04
a 

1.15 ± 0.01
b 

2.08 ± 0.04
b 

1.40 ± 0.02
b 

Uric acid (mg/dl) 2.36 ± 0.13 5.76 ± 0.26
a 

3.45 ± 0.18
b 

9.73 ± 0.22
b 

5.40 ± 0.21
b 

 

The values are expressed as mean ± SE. 
a,
The mean values of HFD group are significantly different in comparison with control 

(P≤0.05). 
b,
The mean values are significantly different in comparison with HFD group (P≤0.05). 

 
 
 
group. Vanadium chloride with simvastatin in the 
HFD+SV group significantly increase parameters of 
kidney function and electrolyte concentration when 
compared with group treated with simvastatin alone 
(HFD+S group) (Tables 2 and 3). 

DISCUSSION  
 
Endogenous antioxidants of non-protein sulfhydryls such 
as glutathione, vitamin C and vitamin E play an important 
role in cell  protection  against  oxidative  stress  and  lipid
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Figure 4. The changes in non-protein sulfahydryl concentrations in heart tissue by high fat diet alone 
and in presence of simvastatin (30 mg/kg BW) or vandium (15 mg/kg BW) or both. 

 
 
 

Table 3. Effect of vanadium chloride or simvastatin or both on electrolytes concentrations of rats fed high fat diet.   

 

Parameter Control diet group HFD group HFD + S group HFD + V group HFA + SV group 

Sodium (mEq/L) 98.88 ± 1.62 134.06 ± 2.16
a 

109.00 ± 2.08
b 

149.52 ± 1.53
b 

122.86 ± 3.13
b 

Potassium (mEq/L) 3.13 ± 0.10 10.01 ± 0.37
a 

5.28 ± 0.18
b 

13.15 ± 0.34
b 

7.76 ± 0.23
b 

Calcium (mEq/L) 4.78 ± 0.21 17.51 ± 0.21
a 

5.33 ± 0.34
b 

27.93 ± 1.10
b 

13.09 ± 0.93
b 

 

The values are expressed as mean ± SE. 
a,
The mean values of HFD group are significantly different in comparison with control 

(P≤0.05). 
b,
The mean values are significantly different in comparison with HFD group (P≤0.05). 

 
 
 
peroxidation (Birben et al., 2012). Oxidative stress may 
lead to neurotoxicity, cardiotoxicity, hepatotoxicity and 
nephrotoxicity in humans and animals (Chen et al., 
2001). Our results in the present study shows that 
feeding a high fat diet significantly decreased the 
concentration of non-protein sulfhydryls. Interestingly, 
however, malondialdehyde (MDA) concentrations 

significantly increased in hepatic and cardiac tissues. 
These results agree with those of Zou et al. (2006) and 
Yuan and Kitts (2003) who reported that hepatic MDA 
concentrations increased and GSH levels and antioxidant 
enzymes activity declined after feeding a high fat diet. 
Increased oxidative stress in the HFD groups may be due 
to over production and accumulation  of  reactive  oxygen 
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species from impairment of mitochondrial oxidation and  
microsomal ω-oxidation of fatty acids (Kersten et al., 
1999). The production of reactive oxygen species 
induces lipid peroxidation of polyunsaturated fatty acids 
and produces high reactive aldehydes, such as MDA and 
trans-4-hydroxyl-2-nonenal, which have long term 
adverse effects on liver and heart tissues. These 
aldehydes further damage cells by impairing nucleotides 
and protein synthesis and by interfering with glutathione’s 
antioxidant potential (Tessari et al., 2009). 

High fat diet causes kidney and heart dysfunction and 
electrolyte imbalance. Kidney dysfunction was 
characterized by significant increases in serum levels of 
creatinine, uric acid and urea which indicate kidney’s 
inability to get rid of waste products. Electrolyte 
imbalance was characterized by the elevation of blood 
sodium, potassium and calcium concentrations. The 
highly elevated activity of LDH and creatine kinase, as a 
result of feeding a high cholesterol diet, indicates 
deterioration of cardiac cells. It has been reported that 
rodents consuming a high fat diet develop visceral 
adiposity, hyperglycaemia, dyslipidaemia, 
hyperinsulinemia and hepatic steatosis (Beyegue et al., 
2012). These manifestations may be considered as a risk 
factor for heart and kidney dysfunctions. 

Oral administration of simvastatin improved 
dyslipidaemia (data not shown) and ameliorate the 
oxidative stress state of HFD-rats. This was indicated by 
the significant increase in the non-protein sulfhydryl 
concentration and the significant reduction in MDA 
concentration in liver and heart tissues of rats in the HFD 
group. Our results are consistent with those of Jahovic et 
al. (2006) who reported that simvastatin prevent lipid 
peroxidation, superoxide generation and cytokines 
production in trinitrobenzene sulfonic acid-induced colitis 
in rats. Also, simvastatin reduced oxidative stress which 
was induced by calcium (Parihar et al., 2012). 
Simvastatin may also reduce the production of reactive 
oxygen species by decreasing the influx through the 
respiratory complex I and II (Larsen et al., 2013).  

Simvastatin may ameliorate nephrotoxic and 
cardiotoxic effects and electrolytes imbalance of high fat 
diet. This was indicated by significant reductions in serum 
levels of urea, creatinine, uric acid, sodium, potassium as 
well as calcium and reductions in the activity of LDH and 
CK. Simvastatin reduces coronary heart diseases with its 
pleiotropic effects, including antioxidant and anti-
inflammatory properties (Shishehbor et al., 2003). 
Simvastatin also has anti-inflammatory properties that 
may reduce risk of cardiovascular diseases (Gilbert et al., 
2017). Other studies show that simvastatin supresses the 
production of pro-inflammatory cytokines and exerts 
immunomodulatory effects (Komolafi et al., 2015) which 
may contribute to reduction in kidney and heart toxicity. 

Simvastatin was reported to preserve glomerular 
filtration  rates  and  reduce  proteinuria  in  patients   with 

  
 
 
 
renal disease (Fried et al., 2001). Homeostasis of ions,  
such as Na

+
, K

+
, and Ca

2+
, is essential for living 

organisms (Yang et al., 2015).  
In the current study, vanadium did not improve 

dyslipidemic (data not shown) or oxidative stress effect of 
high fat diet in HFD-group. Instead, it worsens oxidative 
stress in heart and liver tissues of HFD-rats through the 
reduction of non-protein sulfhydryl and elevation of MDA 
levels in those tissues. Our generated results are in 
consistent with other study reported by Mahmoud et al. 
(2011). Another study has shown that metals such as 
vanadium, copper and iron can produce reactive oxygen 
species which leads to lipid peroxidation, DNA damage, 
depletion of sulfhydryl and altered calcium homeostasis 
(Stohs and Agchi, 1995). The mitochondria, as the main 
cellular source for ROS production, are an important 
target for vanadium accumulation (Soares et al., 2007). 
The mechanism by which vanadium compounds promote 
mitochondrial ROS generation may be due to impaired 
activity of antioxidant enzymes and/or impaired 
respiration from vanadium interacting with mitochondrial’s 
inner membrane (Zhao et al., 2010). Also, increased LPO 
and MDA by vanadium exposure could be explained by 
vanadium’s ability to generate hydroxyl radicals via 
Fenton-like reaction (Shi et al., 1993). 

Contrary to what is hypothesised, the oral ingestion of 
vanadium chloride does not synergize simvastatin’s 
protection of heart or kidney tissues. Instead, it worsens 
the function and tissue integrity of these organs. This was 
indicated by further increases in serum activities of LDH 
and creatine kinase and serum concentration of urea, uric 
acid, creatinine, sodium, potassium and calcium. The 
elevation of blood urea, uric acid and creatinine indicates 
damage to the glomerulus and both proximal and distal 
tubules. Our results agree with the finding of Mahmoud et 
al. (2011). It has been reported that vanadium is a 
potentially toxic agent. Both nephro- and cardiotoxicity of 
vanadium are caused by its inhibition of many enzymes 
and induction of oxidative stress in heart and kidney 
(Mahmoud et al., 2011). Evidence has shown that the 
dissociated vanadium from metal oxide nanoparticles can 
alter electrolyte homeostasis in tissues via extensive 
mechanisms such as ion transporters, ion channels, 
redox reaction, and tubular reabsorption (Marchetti, 
2014). 
 
    
Conclusion 
 
This study demonstrates that vanadium did not show 
beneficial effects on oxidative stress state and did not 
protect liver, kidney or heart tissues during the treatment 
of dyslipidemia with simvastatin in the experimental 
animals. Dissimilarly, vanadium chloride was found to 
cause an elevation in oxidative stress in heart and liver 
tissues and negatively affect kidney and  heart  functions, 



 
 

 
 
 
 
which provides evidence to avoid its use during treatment  
of dyslipidemia with statin. Other long-term study should 
be conducted in order to confirm these results. 
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